Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 991
Filtrar
1.
Bioengineered ; 13(2): 4201-4211, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35176943

RESUMO

Osteoporosis is a metabolic bone disease that significantly affects the quality of life and can even lead to death. In this study, we aimed to investigate the role of RAD51 recombinase (RAD51) in osteoblast and osteoclast differentiation. We analyzed differentially expressed genes using microarray analysis. The osteogenic differentiation capability was analyzed by alkaline phosphatase (ALP) staining and alizarin red staining assays. Osteogenesis and osteoclast related genes expression was detected using quantitative real-time PCR (qPCR) and Western blotting. The phosphorylation of Ataxia-telangiectasia mutated (ATM) and ATR serine/threonine kinase (ATR) was tested using Western blotting. The effect of RAD51 on osteoporosis was also explored in vivo. The results showed that RAD51 was downregulated in osteoporosis, but upregulated in differentiated osteoblasts. Overexpression of RAD51 enhanced the differentiation of osteoblasts and suppressed the formation of osteoclasts. Furthermore, p-ATM and p-ATR levels were upregulated in osteoblasts and downregulated in osteoclasts. RAD51 expression was reduced by the ATM/ATR pathway inhibitor AZ20. AZ20 treatment inhibited osteoblastogenesis and promoted osteoclastogenesis, whereas RAD51 reversed the effects induced by AZ20. Moreover, RAD51 improved bone microarchitecture in vivo. Taken together, ATM/ATR signaling-mediated RAD51 promoted osteogenic differentiation and suppressed osteoclastogenesis. These findings reveal a critical role for RAD51 in osteoporosis.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Osteoclastos/citologia , Osteogênese , Osteoporose/metabolismo , Rad51 Recombinase/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Humanos , Masculino , Camundongos , Células NIH 3T3 , Osteoblastos/citologia , Osteoblastos/enzimologia , Osteoclastos/enzimologia , Osteoporose/genética , Osteoporose/fisiopatologia , Rad51 Recombinase/genética , Ratos , Ratos Sprague-Dawley
2.
J Biol Chem ; 298(3): 101639, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35090892

RESUMO

Phosphatidylinositol-4-phosphate 5-kinase type-1 gamma (Pip5k1c) is a lipid kinase that plays a pivotal role in the regulation of receptor-mediated calcium signaling in multiple tissues; however, its role in the skeleton is not clear. Here, we show that while deleting Pip5k1c expression in the mesenchymal stem cells using Prx1-Cre transgenic mice does not impair the intramembranous and endochondral ossification during skeletal development, it does cause osteopenia in adult mice, but not rapidly growing young mice. We found Pip5k1c loss dramatically decreases osteoblast formation and osteoid and mineral deposition, leading to reduced bone formation. Furthermore, Pip5k1c loss inhibits osteoblastic, but promotes adipogenic, differentiation of bone marrow stromal cells. Pip5k1c deficiency also impairs cytoplasmic calcium influx and inactivates the calcium/calmodulin-dependent protein kinase, which regulates levels of transcription factor Runx2 by modulating its stability and subsequent osteoblast and bone formation. In addition, Pip5k1c loss reduces levels of the receptor activator of nuclear factor-κB ligand, but not that of osteoprotegerin, its decoy receptor, in osteoblasts in bone and in sera. Finally, we found Pip5k1c loss impairs the ability of bone marrow stromal cells to support osteoclast formation of bone marrow monocytes and reduces the osteoclast precursor population in bone marrow, resulting in reduced osteoclast formation and bone resorption. We conclude Pip5k1c deficiency causes a low-turnover osteopenia in mice, with impairment of bone formation being greater than that of bone resorption. Collectively, we uncover a novel function and mechanism of Pip5k1c in the control of bone mass and identify a potential therapeutic target for osteoporosis.


Assuntos
Doenças Ósseas Metabólicas , Reabsorção Óssea , Células-Tronco Mesenquimais , Fosfotransferases (Aceptor do Grupo Álcool) , Animais , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/metabolismo , Remodelação Óssea/fisiologia , Reabsorção Óssea/enzimologia , Reabsorção Óssea/metabolismo , Cálcio/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/enzimologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteoblastos/citologia , Osteoblastos/enzimologia , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/enzimologia , Osteoclastos/metabolismo , Osteogênese , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligante RANK/metabolismo
3.
J Cell Biochem ; 123(2): 275-288, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34668232

RESUMO

Systemic and intracellular metabolic states are critical factors affecting immune cell functions. The metabolic regulator AMP-activated protein kinase (AMPK) senses AMP levels and mediates cellular responses to energy-restrained conditions. The ubiquitously expressed AMPK participates in various biological functions in numerous cell types, including innate immune cell macrophages and osteoclasts, which are their specialized derivatives in bone tissues. Previous studies have demonstrated that the activation of AMPK promotes macrophage polarization toward anti-inflammatory M2 status. Additionally, AMPK acts as a negative regulator of osteoclastogenesis, and upregulation of AMPK disrupts the differentiation of osteoclasts. However, the regulation and roles of AMPK in differentiated osteoclasts have not been characterized. Here, we report that inflammatory stimuli-regulated-AMPK activation of differentiated and undifferentiated osteoclasts in opposite ways. Lipopolysaccharide (LPS) inhibited the phosphorylation of AMPK in macrophages and undifferentiated osteoclasts, but it activated AMPK in differentiated osteoclasts. Inactivating AMPK decreased cellular responses against the activation of toll-like receptor signaling, including the transcriptional activation of proinflammatory cytokines and the bone resorption genes TRAP, and MMP9. The elevation of bone resorption by LPS stimulation was disrupted by AMPK inhibitor, indicating the pivotal roles of AMPK in inflammation-induced activities in differentiated osteoclasts. The AMPK activator metformin did not increase proinflammatory responses, possibly because other factors are also required for this regulation. Notably, changing the activation status of AMPK did not alter the expression levels of bone resorption genes in unstimulated osteoclasts, indicating the essential roles of AMPK in cellular responses to inflammatory stimuli but not in the maintenance of basal levels. Unlike its M2-polarizing roles in macrophages, AMPK was not responsive to the M2 stimulus of interleukin-4. Our observations revealed differences in the cellular properties of macrophages and osteoclasts as well as the complexity of regulatory mechanisms for osteoclast functions.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Reabsorção Óssea , Diferenciação Celular/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Osteoclastos/enzimologia , Animais , Reabsorção Óssea/induzido quimicamente , Reabsorção Óssea/enzimologia , Inflamação/induzido quimicamente , Inflamação/enzimologia , Camundongos , Células RAW 264.7
4.
Sci Rep ; 11(1): 22708, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811438

RESUMO

Osteoclasts are multinucleated, bone-resorbing cells. However, they also digest cartilage during skeletal maintenance, development and in degradative conditions including osteoarthritis, rheumatoid arthritis and primary bone sarcoma. This study explores the mechanisms behind the osteoclast-cartilage interaction. Human osteoclasts differentiated on acellular human cartilage expressed osteoclast marker genes (e.g. CTSK, MMP9) and proteins (TRAP, VNR), visibly damaged the cartilage surface and released glycosaminoglycan in a contact-dependent manner. Direct co-culture with chondrocytes during differentiation increased large osteoclast formation (p < 0.0001) except when co-cultured on dentine, when osteoclast formation was inhibited (p = 0.0002). Osteoclasts cultured on dentine inhibited basal cartilage degradation (p = 0.012). RNA-seq identified MMP8 overexpression in osteoclasts differentiated on cartilage versus dentine (8.89-fold, p = 0.0133), while MMP9 was the most highly expressed MMP. Both MMP8 and MMP9 were produced by osteoclasts in osteosarcoma tissue. This study suggests that bone-resident osteoclasts and chondrocytes exert mutually protective effects on their 'native' tissue. However, when osteoclasts contact non-native cartilage they cause degradation via MMPs. Understanding the role of osteoclasts in cartilage maintenance and degradation might identify new therapeutic approaches for pathologies characterized by cartilage degeneration.


Assuntos
Cartilagem/enzimologia , Condrócitos/enzimologia , Dentina/enzimologia , Articulações/enzimologia , Metaloproteinases da Matriz/metabolismo , Osteoclastos/enzimologia , Cartilagem/ultraestrutura , Diferenciação Celular , Células Cultivadas , Condrócitos/ultraestrutura , Técnicas de Cocultura , Dentina/ultraestrutura , Humanos , Articulações/ultraestrutura , Metaloproteinase 8 da Matriz/genética , Metaloproteinase 8 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinases da Matriz/genética , Osteoclastos/ultraestrutura , Proteólise
5.
Comput Math Methods Med ; 2021: 2909454, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691235

RESUMO

In an effort to bolster our understanding of regulation of bone formation in the context of osteoporosis, we screened out differentially expressed genes in osteoporosis patients with high and low bone mineral density by bioinformatics analysis. PIK3R1 is increasingly being nominated as a pivotal mediator in the differentiation of osteoblasts and osteoclasts that is closely related to bone formation. However, the specific mechanisms underlying the way that PIK3R1 affects bone metabolism are not fully elucidated. We intended to examine the potential mechanism by which PIK3R1 regulates osteoblast differentiation. Enrichment analysis was therefore carried out for differentially expressed genes. We noted that the estrogen signaling pathway, TNF signaling pathway, and osteoclast differentiation were markedly associated with ossification, and they displayed enrichment in PIK3R1. Based on western blot, qRT-PCR, and differentiation analysis in vitro, we found that upregulation of PIK3R1 enhanced osteoblastic differentiation, as evidenced by increased levels of investigated osteoblast-related genes as well as activities of ALP and ARS, while it notably decreased levels of investigated osteoclast-related genes. On the contrary, downregulation of PIK3R1 decreased levels of osteoblast-related genes and increased levels of osteoclast-related genes. Besides, in vitro experiments revealed that PIK3R1 facilitated proliferation and repressed apoptosis of osteoblasts but had an opposite impact on osteoclasts. In summary, PIK3R1 exhibits an osteoprotective effect via regulating osteoblast differentiation, which can be represented as a promising therapeutic target for osteoporosis.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/genética , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Osteoblastos/enzimologia , Osteoclastos/enzimologia , Osteogênese/fisiologia , Células 3T3 , Animais , Densidade Óssea/genética , Densidade Óssea/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Biologia Computacional , Feminino , Regulação Enzimológica da Expressão Gênica , Humanos , Camundongos , Osteoblastos/citologia , Osteoclastos/citologia , Osteogênese/genética , Osteoporose/enzimologia , Osteoporose/genética , Células RAW 264.7 , Transdução de Sinais , Regulação para Cima
6.
J Laryngol Otol ; 135(10): 879-882, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34348812

RESUMO

BACKGROUND: Cholesteatoma-related bone destruction is the cause of many complications due to chronic otitis media. This study aimed to evaluate osteoclastic activity in cholesteatoma-related bone destruction using tartrate-resistant acid phosphatase 5b, an enzyme specific to osteoclastic activity. METHOD: Seventy-two patients diagnosed with chronic otitis media were included in this study and were divided into two groups: with and without bone destruction. The blood serum and tissue tartrate-resistant acid phosphatase 5b levels from both groups were compared. RESULTS: There were no significant differences in the level of serum enzymes between both groups. However, in tissue samples, tartrate-resistant acid phosphatase 5b levels were significantly lower in the bone destruction group than the group without bone destruction. CONCLUSION: This study determined that the level of tartrate-resistant acid phosphatase 5b, a specific enzyme for osteoclastic activity in cholesteatoma-related bone destruction, is locally decreased. This data suggests that osteoclastic activity may decrease in cholesteatoma-related bone destruction. However, further experimental and clinical studies are required to clarify this highly complex mechanism.


Assuntos
Colesteatoma da Orelha Média/complicações , Osteoclastos/enzimologia , Otite Média/complicações , Adulto , Reabsorção Óssea/etiologia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Estudos de Casos e Controles , Colesteatoma da Orelha Média/metabolismo , Colesteatoma da Orelha Média/patologia , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteoclastos/patologia , Otite Média/diagnóstico , Otite Média/metabolismo , Fosfatase Ácida Resistente a Tartarato/sangue
7.
Biomed Res Int ; 2021: 6108999, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34327232

RESUMO

Protocatechualdehyde (PCA), an important component of Salvia miltiorrhiza, has many activities, such as anti-inflammatory and antisepsis activities. However, the role of PCA in osteoclasts is not clear. We used RAW264.7 cells (a mouse leukemic monocyte/macrophage cell line) and bone marrow macrophages (BMMs) to probe the role of PCA in osteoclasts and the underlying mechanism. The effects of PCA on cell activity were evaluated with CCK-8 assays. TRAP staining detected mature osteoclasts. Corning Osteo Assay Surface plates were used to examine absorption. The levels of RNA and protein were analyzed, respectively, using RT-PCR and Western blotting. PCA (5 µg/ml) was not toxic to the two cell types but reduced the formation of osteoclasts and bone absorption. Furthermore, PCA restrained the expression of mRNAs encoding proteins associated with osteoclasts and reduced the phosphorylation of proteins in important signaling pathways. The results indicate that PCA inhibits osteoclast differentiation by suppressing NF-κB and MAPK activity.


Assuntos
Benzaldeídos/farmacologia , Catecóis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Osteoclastos/citologia , Osteoclastos/enzimologia , Actinas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Osteoclastos/efeitos dos fármacos , Ligante RANK/farmacologia , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Cell Death Dis ; 12(7): 654, 2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-34175898

RESUMO

Bromodomain-containing protein 4 (BRD4) has emerged as a promising treatment target for bone-related disorders. (+)-JQ1, a thienotriazolodiazepine compound, has been shown to inhibit pro-osteoclastic activity in a BRD4-dependent approach and impede bone loss caused by ovariectomy (OVX) in vivo. However, clinical trials of (+)-JQ1 are limited because of its poor druggability. In this study, we synthesized a new (+)-JQ1 derivative differing in structure and chirality. One such derivative, (+)-ND, exhibited higher solubility and excellent inhibitory activity against BRD4 compared with its analogue (+)-JQ1. Interestingly, (-)-JQ1 and (-)-ND exhibited low anti-proliferative activity and had no significant inhibitory effect on RANKL-induced osteoclastogenesis as compared with (+)-JQ1 and (+)-ND, suggesting the importance of chirality in the biological activity of compounds. Among these compounds, (+)-ND displayed the most prominent inhibitory effect on RANKL-induced osteoclastogenesis. Moreover, (+)-ND could inhibit osteoclast-specific gene expression, F-actin ring generation, and bone resorption in vitro and prevent bone loss in OVX mice. Collectively, these findings indicated that (+)-ND represses RANKL-stimulated osteoclastogenesis and averts OVX-triggered osteoporosis by suppressing MAPK and NF-κB signalling cascades, suggesting that it may be a prospective candidate for osteoporosis treatment.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Remodelação Óssea/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteoporose Pós-Menopausa/prevenção & controle , Ligante RANK/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Animais , Conservadores da Densidade Óssea/química , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Proteínas Nucleares/metabolismo , Osteoclastos/enzimologia , Osteoclastos/patologia , Osteoporose Pós-Menopausa/enzimologia , Osteoporose Pós-Menopausa/patologia , Osteoporose Pós-Menopausa/fisiopatologia , Ovariectomia , Transdução de Sinais , Estereoisomerismo , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo
9.
Biomolecules ; 11(3)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809737

RESUMO

Bisphosphonates (BPs) are compounds resembling the pyrophosphate structure. BPs bind the mineral component of bones. During the bone resorption by osteoclasts, nitrogen-containing BPs are released and internalized, causing an inhibition of the mevalonate pathway. As a consequence, osteoclasts are unable to execute their function. Alendronate (ALN) is a bisphosphonate used to treat osteoporosis. Its administration could be associated with adverse effects. The purpose of this study is to evaluate four different ALN concentrations, ranging from 10-6 to 10-10 M, in the presence of different combinations of M-CSF and RANKL, to find out the effect of low ALN concentrations on osteoclastogenesis using rat and human peripheral blood mononuclear cells. The cytotoxic effect of ALN was evaluated based on metabolic activity and DNA concentration measurement. The alteration in osteoclastogenesis was assessed by the activity of carbonic anhydrase II (CA II), tartrate-resistant acid phosphatase staining, and actin ring formation. The ALN concentration of 10-6 M was cytotoxic. Low ALN concentrations of 10-8 and 10-10 M promoted proliferation, osteoclast-like cell formation, and CA II activity. The results indicated the induction of osteoclastogenesis with low ALN concentrations. However, when high doses of ALN were administered, their cytotoxic effect was demonstrated.


Assuntos
Alendronato/farmacologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Osteogênese/efeitos dos fármacos , Ligante RANK/farmacologia , Actinas/metabolismo , Animais , Anidrase Carbônica II/metabolismo , Proliferação de Células/efeitos dos fármacos , DNA/metabolismo , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/enzimologia , Osteoclastos/metabolismo , Ratos , Coloração e Rotulagem , Fosfatase Ácida Resistente a Tartarato/metabolismo
10.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670411

RESUMO

Pycnodysostosis, a rare autosomal recessive skeletal dysplasia, is caused by a deficiency of cathepsin K. Patients have impaired bone resorption in the presence of normal or increased numbers of multinucleated, but dysfunctional, osteoclasts. Cathepsin K degrades collagen type I and generates N-telopeptide (NTX) and the C-telopeptide (CTX) that can be quantified. Levels of these telopeptides are increased in lactating women and are associated with increased bone resorption. Nothing is known about the consequences of cathepsin K deficiency in lactating women. Here we present for the first time normalized blood and CTX measurements in a patient with pycnodysostosis, exclusively related to the lactation period. In vitro studies using osteoclasts derived from blood monocytes during lactation and after weaning further show consistent bone resorption before and after lactation. Increased expression of cathepsins L and S in osteoclasts derived from the lactating patient suggests that other proteinases could compensate for the lack of cathepsin K during the lactation period of pycnodysostosis patients.


Assuntos
Reabsorção Óssea/enzimologia , Catepsina K/deficiência , Catepsina L/metabolismo , Catepsinas/metabolismo , Lactação/metabolismo , Osteoclastos/enzimologia , Picnodisostose/enzimologia , Adulto , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Catepsina K/metabolismo , Catepsina L/genética , Catepsinas/genética , Feminino , Humanos , Osteoclastos/patologia , Picnodisostose/genética , Picnodisostose/patologia
11.
Eur J Pharmacol ; 899: 174015, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33711307

RESUMO

Cyclic nucleotide phosphodiesterases (PDEs) are ubiquitously expressed enzymes that hydrolyze phosphodiester bond in the second messenger molecules including cAMP and cGMP. A wide range of drugs blocks one or more PDEs thereby preventing the inactivation of cAMP/cGMP. PDEs are differentially expressed in bone cells including osteoblasts, osteoclasts and chondrocytes. Intracellular increases in cAMP/cGMP levels in osteoblasts result in osteogenic response. Acting via the type 1 PTH receptor, teriparatide and abaloparatide increase intracellular cAMP and induce osteoanabolic effect, and many PDE inhibitors mimic this effect in preclinical studies. Since all osteoanabolic drugs are injectable and that oral drugs are considered to improve the treatment adherence and persistence, osteogenic PDE inhibitors could be a promising alternative to the currently available osteogenic therapies and directly assessed clinically in drug repurposing mode. Similar to teriparatide/abaloparatide, PDE inhibitors while stimulating osteoblast function also promote osteoclast function through stimulation of receptor activator of nuclear factor kappa-B ligand production from osteoblasts. In this review, we critically discussed the effects of PDE inhibitors in bone cells from cellular signalling to a variety of preclinical models that evaluated the bone formation mechanisms. We identified pentoxifylline (a non-selective PDE inhibitor) and rolipram (a PDE4 selective inhibitor) being the most studied inhibitors with osteogenic effect in preclinical models of bone loss at ≤ human equivalent doses, which suggest their potential for post-menopausal osteoporosis treatment through therapeutic repurposing. Subsequently, we treated pentoxifylline and rolipram as prototypical osteogenic PDEs to predict new chemotypes via the computer-aided design strategies for new drugs, based on the structural biology of PDEs.


Assuntos
Osso e Ossos/efeitos dos fármacos , Reposicionamento de Medicamentos , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Inibidores da Fosfodiesterase 4/administração & dosagem , Inibidores da Fosfodiesterase 5/administração & dosagem , Administração Oral , Animais , Densidade Óssea/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Osso e Ossos/enzimologia , Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Desenho de Fármacos , Humanos , Estrutura Molecular , Osteoblastos/efeitos dos fármacos , Osteoblastos/enzimologia , Osteoblastos/patologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/enzimologia , Osteoclastos/patologia , Osteoporose/enzimologia , Osteoporose/patologia , Osteoporose/fisiopatologia , Inibidores da Fosfodiesterase 4/efeitos adversos , Inibidores da Fosfodiesterase 5/efeitos adversos , Transdução de Sinais , Relação Estrutura-Atividade
12.
Nat Commun ; 12(1): 1832, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758201

RESUMO

Synthetic glucocorticoids (GCs), one of the most effective treatments for chronic inflammatory and autoimmune conditions in children, have adverse effects on the growing skeleton. GCs inhibit angiogenesis in growing bone, but the underlying mechanisms remain unclear. Here, we show that GC treatment in young mice induces vascular endothelial cell senescence in metaphysis of long bone, and that inhibition of endothelial cell senescence improves GC-impaired bone angiogenesis with coupled osteogenesis. We identify angiogenin (ANG), a ribonuclease with pro-angiogenic activity, secreted by osteoclasts as a key factor for protecting the neighboring vascular cells against senescence. ANG maintains the proliferative activity of endothelial cells through plexin-B2 (PLXNB2)-mediated transcription of ribosomal RNA (rRNA). GC treatment inhibits ANG production by suppressing osteoclast formation in metaphysis, resulting in impaired endothelial cell rRNA transcription and subsequent cellular senescence. These findings reveal the role of metaphyseal blood vessel senescence in mediating the action of GCs on growing skeleton and establish the ANG/PLXNB2 axis as a molecular basis for the osteoclast-vascular interplay in skeletal angiogenesis.


Assuntos
Senescência Celular/efeitos dos fármacos , Células Endoteliais/metabolismo , Glucocorticoides/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Osteoclastos/metabolismo , Ribonuclease Pancreático/metabolismo , Animais , Apoptose/efeitos dos fármacos , Desenvolvimento Ósseo/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Senescência Celular/genética , Células Endoteliais/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Metilprednisolona/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neovascularização Patológica , Proteínas do Tecido Nervoso/genética , Osteoclastos/efeitos dos fármacos , Osteoclastos/enzimologia , Osteogênese/efeitos dos fármacos , RNA Ribossômico/biossíntese , RNA Interferente Pequeno , Proteínas Recombinantes , Ribonuclease Pancreático/genética , Ribonuclease Pancreático/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tomógrafos Computadorizados
13.
Biomed Pharmacother ; 133: 111089, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33378983

RESUMO

Osteoarthritis is a chronic, systemic and inflammatory disease. However, the pathogenesis and understanding of RA are still limited. Ubiquitin-specific protease 13 (USP13) belongs to the deubiquitinating enzyme (DUB) superfamily, and has been implicated in various cellular events. Nevertheless, its potential on RA progression has little to be investigated. In the present study, we found that USP13 expression was markedly up-regulated in synovial tissue samples from patients with RA, and was down-regulated in human fibroblast-like synoviocytes (H-FLSs) stimulated by interleukin-1ß (IL-1ß), tumor necrosis factor alpha (TNF-α) or lipopolysaccharide (LPS). We then showed that over-expressing USP13 markedly suppressed inflammatory response, oxidative stress and apoptosis in H-FLSs upon IL-1ß or TNF-α challenge, whereas USP13 knockdown exhibited detrimental effects. In addition, USP13-induced protective effects were associated with the improvement of nuclear factor erythroid 2-related factor 2 (Nrf-2) and the repression of Casapse-3. Furthermore, phosphatase and tensin homolog (PTEN) expression was greatly improved by USP13 in H-FLSs upon IL-1ß or TNF-α treatment, whereas phosphorylated AKT expression was diminished. In response to IL-1ß or TNF-α exposure, nuclear transcription factor κB (NF-κB) signaling pathway was activated, whereas being significantly restrained in H-FLSs over-expressing USP13. Mechanistically, USP13 directly interacted with PTEN. Of note, we found that USP13-regulated cellular processes including inflammation, oxidative stress and apoptotic cell death were partly dependent on AKT activation. Furthermore, USP13 over-expression effectively inhibited osteoclastogenesis and osteoclast-associated gene expression. The in vivo experiments finally confirmed that USP13 dramatically repressed synovial hyperplasia, inflammatory cell infiltration, cartilage damage and bone loss in collagen-induced arthritis (CIA) mice via the same molecular mechanisms detected in vitro. Taken together, these findings suggested that targeting USP13 may provide feasible therapies for RA.


Assuntos
Apoptose , Artrite Experimental/prevenção & controle , Remodelação Óssea , Endopeptidases/metabolismo , Articulações/enzimologia , Osteoartrite/prevenção & controle , Estresse Oxidativo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Idoso , Animais , Artrite Experimental/enzimologia , Artrite Experimental/genética , Artrite Experimental/patologia , Células Cultivadas , Colágeno Tipo II , Endopeptidases/genética , Humanos , Hiperplasia , Articulações/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Pessoa de Meia-Idade , Osteoartrite/enzimologia , Osteoartrite/genética , Osteoartrite/patologia , Osteoclastos/enzimologia , Osteoclastos/patologia , Osteogênese , PTEN Fosfo-Hidrolase/genética , Transdução de Sinais , Sinoviócitos/enzimologia , Sinoviócitos/patologia , Proteases Específicas de Ubiquitina/genética
14.
J Biochem ; 169(4): 459-466, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33135054

RESUMO

In osteoclasts, the a3 isoform of the proton-pumping V-ATPase plays essential roles in anterograde trafficking of secretory lysosomes and extracellular acidification required for bone resorption. This study examined functional complementation of the a isoforms by exogenously expressing the a1, a2 and a3 isoforms in a3-knockout (KO) osteoclasts. The expression levels of a1 and a2 in a3KO osteoclasts were similar, but lower than that of a3. a1 significantly localized to lysosomes, whereas a2 slightly did. On the other hand, a2 interacted with Rab7, a regulator of secretory lysosome trafficking in osteoclasts, more efficiently than a1. a1 partly complemented the functions of a3 in secretory lysosome trafficking and calcium phosphate resorption, while a2 partly complemented the former but not the latter function.


Assuntos
Lisossomos/enzimologia , Osteoclastos/enzimologia , Subunidades Proteicas , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Isoenzimas/metabolismo , Lisossomos/genética , Camundongos , Camundongos Knockout , ATPases Vacuolares Próton-Translocadoras/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
15.
Biosci Rep ; 40(6)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32478376

RESUMO

Bone metastasis of colorectal cancer (CRC) cells leads to osteolysis. Aberrant activation of osteoclasts is responsible for bone resorption in tumor. In general, bone marrow-derived monocytes (BMMs) differentiate into osteoclasts, however, how CRC cells interact with BMMs and how to regulate the differentiation is elusive. We here report that CRC cells promote bone resorption in bone metastasis. Transcriptomic profiling revealed CCL3 up-regulated in MC-38 conditional medium treated BMMs. Further investigation demonstrated that CCL3 produced by BMMs facilitated cell infusion and thus promoted the osteoclastogenesis. In addition, CRC cells derived EGF stimulated the production of CCL3 in BMMs through activation of ERK/CREB pathway. Blockage of EGF or CCL3 can efficiently attenuate the osteolysis in bone metastasis of CRC.


Assuntos
Neoplasias Ósseas/enzimologia , Quimiocina CCL3/metabolismo , Neoplasias Colorretais/enzimologia , Fator de Crescimento Epidérmico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Osteoclastos/enzimologia , Osteogênese , Osteólise/enzimologia , Tíbia/enzimologia , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Comunicação Celular , Linhagem Celular Tumoral , Quimiocina CCL3/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Osteoclastos/patologia , Osteólise/genética , Osteólise/patologia , Transdução de Sinais , Tíbia/patologia
16.
Biomed Pharmacother ; 129: 110341, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32554249

RESUMO

Osteoclasts are the only cells in the body with a bone-resorption function. The identification of anti-osteoclastogenic agents is important in managing bone loss diseases. The dried vines of Trachelospermum jasminoides (Lindl.) Lem. have been used as a herbal medicine to treat musculoskeletal soreness in East Asia for hundreds of years. In the present study, we focused on the effect of Trachelospermum jasminoides (Lindl.) Lem. extract (TJE) on osteoclast differentiation. As indicated by tartrate-resistant acid phosphatase (TRAP) staining, TJE inhibited osteoclastogenesis induced by receptor activator of nuclear factor-κB ligand from bone marrow-derived monocytes/macrophages without showing any cytotoxicity. In addition, TJE effectively suppressed F-actin ring formation and the bone-resorption function of osteoclasts. The subsequent studies such as network pharmacology and molecular investigation, revealed that TJE inhibited osteoclastogenesis-related genes in a dose- and time-dependent manner through NF-κB, MAPK and AKT-mediated mechanism followed by the nuclear factor of activated T cells, cytoplasmic 1 (NFATc1)/c-Fos pathway. Our study could potentially explain the underlying molecular pharmacology of TJE in osteoclast-related diseases. What's more, it suggested that network pharmacology could help the modernization of traditional Chinese medicine.


Assuntos
Apocynaceae , Diferenciação Celular/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células 3T3 , Animais , Apocynaceae/química , Diferenciação Celular/genética , Técnicas de Cocultura , Bases de Dados de Proteínas , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/enzimologia , Osteogênese/genética , Extratos Vegetais/isolamento & purificação , Mapas de Interação de Proteínas , Transdução de Sinais
17.
J Ethnopharmacol ; 257: 112873, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32298753

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Litsea cubeba (Lour.) Pers. has been traditionally used as a folk prescription for treating rheumatic diseases in China. AIM OF THE STUDY: This study aimed to investigate the effects and underlying mechanism of LCA, a new type of dibenzyl butane lignin compound extracted from L. cubeba, on macrophage colony stimulating factor (M-CSF) plus receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation in mouse-derived bone marrow macrophages (BMMs). MATERIAL AND METHODS: TRAP staining, TRAP enzyme activity assay and actin ring staining were applied to identify the effects of LCA on osteoclast differentiation. Protein expression of NFATc1, c-Fos and MMP-9, and phosphorylation of p65, Akt, JNK, ERK and p38 in RANKL-induced osteoclasts was determined using western blotting to investigate the underlying mechanism. RESULTS: LCA significantly suppressed RANKL-induced osteoclast differentiation by inhibiting TRAP activity, decreasing the number of TRAP+ multinuclear osteoclasts and reducing the formation of F-actin ring without obvious cytotoxicity in BMMs. Moreover, LCA treatment strongly reduced protein expression of NFATc1, c-Fos and MMP-9, and attenuated the phosphorylation of p65, Akt, JNK, ERK and p38 in RANKL-stimulated BMMs. CONCLUSIONS: LCA ameliorated RANKL-induced osteoclast differentiation via inhibition of Akt and MAPK signalings in BMMs, and may serve as a potential pro-drug for bone destruction prevention.


Assuntos
Transdiferenciação Celular/efeitos dos fármacos , Lignina/farmacologia , Litsea , Macrófagos/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante RANK/farmacologia , Animais , Células Cultivadas , Fêmur/citologia , Lignina/isolamento & purificação , Litsea/química , Macrófagos/enzimologia , Masculino , Camundongos Endogâmicos C57BL , Osteoclastos/enzimologia , Extratos Vegetais/isolamento & purificação , Transdução de Sinais , Tíbia/citologia
18.
Med Sci Monit ; 26: e918370, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31914120

RESUMO

BACKGROUND Although extracellular signal-regulated kinase 5 (ERK5) is known to be critical for osteoclast differentiation, there are few studies on how fluid shear stress (FSS) regulates osteoclast differentiation through the ERK5 signaling pathway. We examined the expression of nuclear factor of activated T cells c1 (NFATc1) in RAW264.7 cells and its downstream factors, including cathepsin K (CTSK), tartrate-resistant acid phosphatase (TRAP), matrix metalloproteinases-9 (MMP-9) and their relationship with ERK5. MATERIAL AND METHODS RAW264.7 cells were treated with RANKL, XMD8-92 (ERK5 inhibitor), and then loaded onto 12 dyn/cm² FSS for 4 days. Endpoints measured were osteoclast differentiation, bone resorption, and TRAP activity. Cell viability was detected by using the Cell Counting Kit-8 (CCK-8) assay. Western blot was used to analyze protein expression of phosphorylated-ERK5 (p-ERK5), NFATc1, CTSK, TRAP, and MMP-9. RESULTS FSS inhibited osteoclast differentiation and expression of NFATc1, CTSK, TRAP, and MMP-9; cell viability was not affected. ERK5 expression increased by FSS but not by RANKL, and it was blocked by XMD8-92. Furthermore, FSS suppressed osteoclast differentiation in RAW264.7 cells through ERK5 pathway. CONCLUSIONS Our findings demonstrated that FSS inhibited osteoclast differentiation in RAW264.7 cells via the ERK5 pathway through reduced NFATc1 expression and its downstream factors MMP-9, CTSK, and TRAP.


Assuntos
Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Osteoclastos/citologia , Osteoclastos/enzimologia , Animais , Fenômenos Biomecânicos , Reabsorção Óssea , Catepsina K/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Sobrevivência Celular/fisiologia , Hematopoese , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Fatores de Transcrição NFATC/metabolismo , Fosforilação , Células RAW 264.7 , Estresse Mecânico , Fosfatase Ácida Resistente a Tartarato/metabolismo
19.
Mol Cancer Ther ; 19(2): 650-660, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31694887

RESUMO

Bone metastasis is a severe complication associated with various carcinomas. It causes debilitating pain and pathologic fractures and dramatically impairs patients' quality of life. Drugs aimed at osteoclast formation significantly reduce the incidence of skeletal complications and are currently the standard treatment for patients with bone metastases. Here, we reported that serum- and glucocorticoid-inducible kinase 1 (SGK1) plays a pivotal role in the formation and function of osteoclasts by regulating the Ca2+ release-activated Ca2+ channel Orai1. We showed that SGK1 inhibition represses osteoclastogenesis in vitro and prevents bone loss in vivo Furthermore, we validated the effect of SGK1 on bone metastasis by using an intracardiac injection model in mice. Inhibition of SGK1 resulted in a significant reduction in bone metastasis. Subsequently, the Oncomine and the OncoLnc database were employed to verify the differential expression and the association with clinical outcome of SGK1 gene in patients with breast cancer. Our data mechanistically demonstrated the regulation of the SGK1 in the process of osteoclastogenesis and revealed SGK1 as a valuable target for curing bone metastasis diseases.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Proteínas Imediatamente Precoces/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Benzoatos/farmacologia , Neoplasias Ósseas/enzimologia , Neoplasias Ósseas/genética , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Proteínas Imediatamente Precoces/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Proteína ORAI1/metabolismo , Osteoclastos/enzimologia , Osteoclastos/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-fos/biossíntese , Proteínas Proto-Oncogênicas c-fos/genética , Ligante RANK/antagonistas & inibidores , Ligante RANK/metabolismo , Transdução de Sinais , Transfecção
20.
Int J Mol Sci ; 20(19)2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31546645

RESUMO

Abdominal aortic aneurysm (AAA) is among the top 20 causes of death in the United States. Surgical repair is the gold standard for AAA treatment, therefore, there is a need for non-invasive therapeutic interventions. Aneurysms are more closely associated with the osteoclast-like catabolic degradation of the artery, rather than the osteoblast-like anabolic processes of arterial calcification. We have reported the presence of osteoclast-like cells (OLCs) in human and mouse aneurysmal tissues. The aim of this study was to examine OLCs from aneurysmal tissues as a source of degenerative proteases. Aneurysmal and control tissues from humans, and from the mouse CaPO4 and angiotensin II (AngII) disease models, were analyzed via flow cytometry and immunofluorescence for the expression of osteoclast markers. We found higher expression of the osteoclast markers tartrate-resistant acid phosphatase (TRAP), matrix metalloproteinase-9 (MMP-9), and cathepsin K, and the signaling molecule, hypoxia-inducible factor-1α (HIF-1α), in aneurysmal tissue compared to controls. Aneurysmal tissues also contained more OLCs than controls. Additionally, more OLCs from aneurysms express HIF-1α, and produce more MMP-9 and cathepsin K, than myeloid cells from the same tissue. These data indicate that OLCs are a significant source of proteases known to be involved in aortic degradation, in which the HIF-1α signaling pathway may play an important role. Our findings suggest that OLCs may be an attractive target for non-surgical suppression of aneurysm formation due to their expression of degradative proteases.


Assuntos
Aneurisma da Aorta Abdominal/enzimologia , Osteoclastos/enzimologia , Animais , Aneurisma da Aorta Abdominal/metabolismo , Catepsina K/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Macrófagos/enzimologia , Macrófagos/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Osteoclastos/metabolismo , Proteólise , Células RAW 264.7 , Fosfatase Ácida Resistente a Tartarato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...